a model for modified electrode with carbon nanotube composites using percolation theory in fractal space
Authors
abstract
we introduce a model for prediction the behavior of electrodes which modified withcarbon nanotubes in a polymer medium. these kinds of polymer composites aredeveloped in recent years, and experimental data for its percolation threshold isavailable. we construct a model based on percolation theory and fractal dimensionsand using experimental percolation threshold for calculating the moments of currentdistribution function.
similar resources
A model for modified electrode with carbon nanotube composites using percolation theory in fractal space
We introduce a model for prediction the behavior of electrodes which modified withcarbon nanotubes in a polymer medium. These kinds of polymer composites aredeveloped in recent years, and experimental data for its percolation threshold isavailable. We construct a model based on percolation theory and fractal dimensionsand using experimental percolation threshold for calculating the moments of c...
full textOn the lack of thermal percolation in carbon nanotube composites
Recent experiments demonstrated very low percolation thresholds for carbon nanotube composites signified by steep increases in electrical conductivity at very low nanotube loadings. By contrast, thermal transport measurements, even on the same samples, showed no signature of the percolation threshold. These contrasting behaviors are particularly intriguing considering that both transport proces...
full textElectrochemical Sensor for Determination of Ascorbic Acid Using a 2-Chlorobenzoyl Ferrocene/Carbon Nanotube Paste Electrode
A chemically modified carbon paste electrode with 2-chlorobenzoyl ferrocene (2CBF) and carbon nanotube (2CBFCNPE) was employed to study the electrocatalytic oxidation of ascorbic acid in aqueous solution using cyclic voltammetry, square wave voltammetry and chronoamperometry. The diffusion coefficient (D = 1.42 × 10-6 cm2 s-1), and the kinetic parameter such as ...
full textEffect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites
Percolation conductivity of a stick network depends on alignment as well as concentration. We show that both dependences exhibit critical (power-law) behavior, and study the alignment threshold in detail. The highest conductivity occurs for slightly aligned, rather than isotropic, sticks. Experiments on single wall carbon nanotube composites are supported by Monte Carlo simulations. These resul...
full textA Sensitive Electrochemical Sensor for Determination of Imipramine in Urine Sample Using Carbon Ionic Liquid Electrode Modified With Montomorillonite Nanoclay
We used an effective electrochemical sensor for the determination of imipramine at pH 7.2 using a carbon nanocomposite electrode. The electrode has been designed by incorporation of montmorillonite nanoclay into the carbon ionic liquid electrode. The high sensitivity of 1.714 μA (μM)-1, two linear calibration ranges of 0.1–2 μM and 2-40 μM, and detection limit of 19 nM were achieved. The relati...
full textSimultaneous Voltammetric Determination of Ascorbic Acid and Uric Acid Using a Modified Multiwalled Carbon Nanotube Paste Electrode
This paper describes the development, electrochemical characterization and utilization of novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of ascorbic acid (AA). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of AA about 235 mV ...
full textMy Resources
Save resource for easier access later
Journal title:
journal of physical & theoretical chemistryISSN
volume 6
issue 1 2009
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023